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Motivation for MWI and ICl In
numerical weather prediction (NWP)
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Geophysical sensitivities in MWI and ICI radiances
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NWP motivation 1: improved atmospheric initial conditions
through all-sky radiance assimilation
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NWP motivation 2: improved cloud and precipitation
modelling through parameter estimation

ECMWEF vs. SSMIS 19 to 190 GHz cost function
Convective snow particle shape

1.00F

microwave radiances 0.98 +50% convective snow mixing ratio

, 2 0.96F
can help constrain many g 0.94F \-50% convective snow mixing ratio

important microphysical  ogF E
parameters 0.90F ! ! ! : L =
(e.g. convective snow sector block agg. domn 3-bilet

particle shape and size
distribution)

RTTOV-SCATT v13.0 default physical parameter assumptions improved using simultaneous 6-parameter estimation
(Geer, 2021, AMT, https://doi.org/10.5194/amt-14-5369-2021)
Particle shapes from the ARTS database (Eriksson et al., 2018, https://doi.org/10.5194/essd-10-1301-2018)
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NWP motivation 3: improved earth
system analysis through all-surface
radiance assimilation
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NWP motivation 4: a reference for calibration and monitoring
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Preparing sub-mm radiative
transfer (RTTOV)

<~ ECMWF



A fast radiative transfer model for operational applications

News ~ Software ¥ Monitoring ¥ Support Publications Visiting Scientists Training
RTTOV ~ Overview ~ RTTOV v13 Documentation ~ Downloads Bug fixes ¥ Coefficients Future Plans
Introduction

Current version: v13.0, November 2020

RTTOV (Radiative Transfer for TOVS) is a very fast radiative transfer model for passive visible,
infrared and microwave downward-viewing satellite radiometers, spectrometers and

interferometers. It is a FORTRAN 90 code for simulating satellite radiances, designed to be 1 Introduction
incorporated within user applications. The following paper gives an overview of the model and 2 Obtaining RTTOV
should be used when citing RTTOV: 3 Documentation and Resources

Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J., Roquet, P., Matricardi, 5 Publications
M., Geer, A., Bormann, N., and Lupu, C., 2018: An update on the RTTOV fast radiative transfer model
(currently at version 12), Geosci. Model Dev., 11, 2717-2737, https://doi.org/10.5194/gmd-11-2717-

2018 &.

EUMETSAT

NWP SAF

NUMERICAL WEATHER PREDICTION

RTTOV Overview [hide]

4 Previous/other versions

https://nwp-saf.eumetsat.int/site/software/rttov/
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Observation operator preparation: spectroscopy and water permittivity

» Gas spectroscopy is mainly water vapour lines, oxygen & ozone lines, continuum

— EUMETSAT workshop: Atmospheric Gas Absorption Knowledge in the Submillimeter:
Modeling, Field Measurements, and Uncertainty Quantification, Mattioli et al., 2019,
https://doi.org/10.1175/BAMS-D-19-0074.1

— Reference model development: Turner and Saunders, 2019, Sub-millimetre
Spectroscopy for AMSUTRAN. Part One: The Theoretical Basis, https://nwp-
saf.eumetsat.int/publications/tech_reports/amsutran_1Thz NWPSAF _report.pdf

— Ongoing EUMETSAT-funded Met Office study: characterising bias and error in sub-mm
spectroscopy using ISMAR (airborne microwave/sub-mm spectrometer)
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— Improved permittivity model, particularly for high frequencies
(sub-mm) and supercooled clouds — Rosenkranz (2015,
https://doi.org/10.1109/TGRS.2014.2339015)

— Assessment in NWP by Lonitz and Geer (2019,
https://doi.org/10.5194/amt-12-405-2019)

ABSORPTION [km-1]
o
o
———

o
)

1 1 1 1
194 37.0 63.3 91.7 183.3 300.0 500.0 999.0
Frequency [GHz]

g
o

o
A 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 10


https://doi.org/10.1175/BAMS-D-19-0074.1
https://nwp-saf.eumetsat.int/publications/tech_reports/amsutran_1Thz_NWPSAF_report.pdf

Brightness temperature [K]

Observation operator preparation: frozen cloud and precipitation

Particle shapes and size distributions
representing frozen particles from 1 to 884 GHz
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Particle shapes from the ARTS database (Eriksson et al., 2018, https://doi.org/10.5194/essd-10-1301-2018)
Bulk brightness temperature simulations, PSDs from Geer et al., 2021, https://doi.org/10.5194/gmd-2021-73
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Representation of particle orientation and polarisation effects
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Fig. 1, Barlakas et al., 2021, AMT, https://doi.org/10.5194/amt-14-3427-2021, showing optical properties of the azimuthal
random orientation (ARO) large plate aggregate particle of Brath et al. (2020, AMT, https://doi.org/10.5194/amt-13-2309-2020 )
relative to the totally random orientation (TRO) original particle of Eriksson et al. (2018)
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Particle orientation and polarisation effects in

(Barlakas et al., 2021, AMT, https://doi.org/10.5194/amt-14-3427-2021)

GMI 166 Ghz TBv — TBh
as a function of TBv

Best polarisation ratio (o=1.4)
found by parameter search using
global GMI observations versus
ECMWF-based RTTOV-SCATT
simulations
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RTTOV vs. ARTS at sub-mm frequencies: focus on scattering solver

RTTOV-SCATT (delta-Eddington
solver) compared to ARTS 36-
stream discrete ordinate radiative
transfer at 664+4.2 GHz

RTTOV-SCATT has errors but
these are typically less than 10%
of the observation error budget
for data assimilation: accuracy

should be sufficient for ICI
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Barlakas, Galligani, Geer and Eriksson,
(2021, submitted to JQSRT): On the
accuracy of RTTOV-SCATT for radiative
transfer at all-sky microwave and
submillimeter frequencies
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Observation operator preparation: surface interaction

Many ICI channels have some sensitivity to the surface at high latitudes and high altitudes

— Sea surface emissivity

TESSEM - Sea-surface emissivity parametrization from microwaves to millimetre waves, Prigent et al.,
2017, https://doi.org/10.1002/q].2953)

PARMIO - A Reference Quality Model For Ocean Surface Emissivity And Backscatter From The
Microwave To The Infrared https://www.issibern.ch/teams/oceansurfemiss/index.php/contents/

— Sea-ice, snow and land surface emissivity

« Atlas? Very difficult at ICI frequencies

Dynamic emissivity retrieval at lower frequencies (e.g. 10 — 100 GHz) with physical extrapolation to
higher frequencies?
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MWI and ICI together
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Retrieved surface emissivity from DMSP-F17 SSMIS

At 19 GHz (h-polarisation)
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Hydrometeor “spectra”
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Bulk brightness temperature simulations of homogenous cloud layer from Geer et al., 2021, https://doi.org/10.5194/gmd-2021-73

o
A 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 18


https://doi.org/10.5194/gmd-2021-73

New scientific possibilities and questions for MWI and ICI

 Assimilate well-calibrated sounding channels:
— Temperature channels (e.g. 50 GHz, 118 GHz) from a conical scanner

— What is the impact of having so many humidity sounding channels? (8 at 183
GHz, 3 at 325 GHz, 3 at 448 GHz) Observation error correlation?

* First operational sub-mm mission:

— Constrain the representation of smaller frozen particles in models
Ice cloud, anvil cloud, smaller snow and graupel particles

* Ice particle orientation

e MWI-ICI combination — 19 to 664 GHz

— Broad-frequency constraint of microphysical and microstructural representation
of snow on ground and in the air.
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Observation processing

-c EC MWF © ECMWEF October 19, 2021



ICl Swath - about 800 samples per scan

-ICI: Conically scanning counterclockwise at 45 rpm. Incidence angles within 53°+2° . Observations acquired
+ 65° in azimuth in the fore view (about 1700 km swath)

ICI footprint: 16 km (ICI-1 to ICI-11);

Across-track footprint overlap 3-4x; spatial sampling ~2.7 km

Along-track footprint overlap ~ 40%; spatial sampling ~9 km
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EUM/RSP/VWG/21/1232478, v1 Draft, 14 June 2021
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Superobbing Raw FOV r‘ NRAWN
Superobbing §v§s§s!o! b
« Superobbing: average all observations falling into an equal- box

area box on the earth’s surface (e.g. 80 km by 80 km for all-
sky assimilation at ECMWF). Why?

— To colocate channels

‘ b
INNNY
RRTnN |
— Standardise the FOV across channels with varying footprint sizes E‘:“:“‘\'“:\ -

— To match effective resolution of the forecast model (about 4x grid ““““‘

resolution; given the model is at ~8km resolution; this will need to
be reduced in future)

— To assimilate cloud features that are more predictable (spatial
filtering)

— Reduce data volume (large file sizes)

— Avoid having to simulate horizontal observation error correlations
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* Possibly superob MWI and ICI into one supersensor

L A4

— Make surface emissivity, observation error, and inter-channel error
correlations easier to deal with

— Possibly use ECMWEF in-house tool or NWP-SAF “MWIPP”
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Summary
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Summary: preparations for using MWI and ICI in weather forecasting

« Motivations:
* better initial conditions
* improved cloud and precipitation microphysics
« earth system variables (e.g. snow, sea-ice)

+ call/val and monitoring

» Radiative transfer preparations in RTTOV (particularly for sub-mm):
e gas spectroscopy

« cloud and precipitation modelling (liquid phase, ice phase, particle shape, size, particle orientation)

« surface radiative transfer (ocean(sea-ice, snow, land)

* Possible timeline and plans at ECMWF

- Start preparing the processing chain once the BUFR test data is available
* Develop superobbing of MWI and ICI into one supersensor at around e.g. 40km resolution
* Monitor MWI and ICI radiances soon after launch (2025)

* Operational assimilation of MWI and ICI within 20257
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